02.07.2019

Графические тесты по химии. Извлечение серебра из отходов кино-, фото-и рентгенопленки, фотопластинок и фотобумаги. Необходимая температура для плавления меди


С медью можно поставить несколько любопытных опытов, поэтому посвятим ей особую страничку.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь,- оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: CuCO 3 *Сu(ОН) 2 (основной карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной . Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит .

Давайте снова обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты?

Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет. Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыря-хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом NH 4 OH , который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря. А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его «жало» окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

О. Ольгин. "Опыты без взрывов"
М., "Химия", 1986

На заре человечества люди пытались освоить создание различных элементов из металлов. Такие вещи были более изящные, тонкие и долговечные. Одним из первых была «покорена» медь. Наличие руды требовало расплавления материала и отделения от шлака. Это выполнялось в раскаленных углях на земле. Температуру нагнетали мехами, создающими жар. Процесс был горячим и трудоемким, но позволял получать необычные украшения, посуду и орудия труда. Отдельным направлением стало изготовление оружия для охоты, которое могло служить долгое время. Температура плавления меди относительно невысока, что позволяет и сегодня плавить ее в бытовой обстановке и производить предметы, необходимые для ремонта механизмов или электрического оборудования. Какая температура плавки у меди и ее сплавов? Чем можно выполнить эту процедуру в домашних условиях?

В таблице Менделеева этот материал получил название Cuprum. Ему присвоен атомный номер 29. Это пластичный материал, отлично обрабатывающийся в твердом виде шлифовальным и резным оборудованием. Хорошая проводимость напряжения позволяет активно использовать медь в электрике и промышленном оборудовании.

В земной коре материал находится в виде сульфидной руды. Часто встречаемые залежи обнаруживаются в Южной Америке, Казахстане, России. Это медный колчедан и медный блеск. Они образовываются при средней температуре, как геотермальные тоненькие пласты. Находят и чистые самородки, которые не нуждаются в отделении шлака, но требуют плавления для добавки других металлов, т. к. в чистом виде медь обычно не используется.

Красновато-желтый оттенок металл имеет благодаря оксидной пленке, покрывающей поверхность сразу, при взаимодействии с кислородом. Оксид не только придает красивый цвет, но и содействует более высоким антикоррозийным свойствам. Материал без оксидной пленки имеет светло-желтый цвет.

Плавится чистая медь при достижении 1080 градусов. Это относительно невысокая цифра позволяет работать с металлом как в производственных условиях, так и дома. Другие физические свойства материала следующие:

  • Плотность меди в чистом виде составляет 8,94 х 103 кг/м квадратный.
  • Отличается металл и хорошей электропроводностью, которая при средней температуре в 20 градусов является 55,5 S .
  • Медь хорошо передает тепло, и этот показатель составляет 390 Дж/кг.
  • Выделение углерода при кипении жидкого материала начинается от 2595 градусов.
  • Электрическое сопротивление (удельное) в температурном диапазоне от 20 до 100 градусов - 1,78 х 10 Ом/м.

Плавление металла и его сплавов

График плавления меди имеет пять ступеней процесса:

  1. При температуре 20-100 градусов металл находится в твердом состоянии. Последующий нагрев содействует изменению цвета, что происходит при удалении верхнего оксида.
  2. При достижении отметки температуры в 1083 градуса, материал переходит в жидкое состояние, а его цвет становится абсолютно белым. В этот момент разрушается кристаллическая решетка металла. На небольшой период рост температуры прекращается, а после достижения полностью жидкой стадии, возобновляется.
  3. Закипает материал при 2595 градусах. Это схоже с кипением густой жидкости, где также происходит выделение углерода.
  4. Когда источник тепла выключается, то пиковая температура начинает понижаться. При кристаллизации происходит замедление снижения температуры.
  5. После обретения твердой стадии, металл остывает окончательно.

Температура плавления бронзы немного ниже из-за наличия в составе олова. Разрушение кристаллической решетки этого сплава происходит при достижении 950-1100 градусов. Медный сплав с цинком, известный как латунь, способен плавиться от 900°C. Это позволяет работать с материалами при несложном оборудовании.

Плавление в бытовых условиях

Плавка меди в домашних условиях возможна несколькими способами. Для этого понадобиться ряд приспособлений. Сложность процесса зависит от использования конкретного вида оборудования.

Самым простым способом для плавления меди дома является муфельная печь. У мастеров по металлу найдется такое устройство, которым можно будет воспользоваться. Кусочки металла ложатся в специальную емкость - тигель. Он устанавливается в печь, на которой выставляется требуемая температура. Через смотровое окно можно заметить процесс перехода в жидкое состояние, и открыв дверцу удалить оксидную пленку. Делать это необходимо стальным крюком и в защитной перчатке. Жар от печи довольно сильный, поэтому действовать необходимо аккуратно.

Еще одним способом плавки меди в домашних условиях является пропан-кислородное пламя. Оно хорошо подходит и для сплавов металла с цинком или оловом. В качестве рабочего инструмента в руках мастера может быть горелка или резак. Ацетилен-кислородное пламя тоже подойдет, но погреть материал придется немного подольше. Кусочки сплава помещают в тигель, устанавливаемый на жаропрочное основание. Горелкой выполняют произвольные движения по всему корпусу емкости. Быстрый эффект можно получить, если следить чтобы факел пламени касался поверхности тигеля кончиком синего цвета. Там наибольшая температура.

Еще одним способом является мощная микроволновка. Но чтобы повысить теплосберегающие свойства и защитить внутренние детали техники от перегрева, необходимо поместить тигель в жаропрочный материал и накрыть его сверху. Это могут быть специальные виды кирпича.

Самым простым в экономическом плане способом служит слой древесного угля, на который устанавливается горн с медью. Усилить жар можно при помощи пылесоса, работающего на выдув. Кончик шланга направленный на угли должен быть металлическим, а сопло иметь плоскую форму для усиления потока воздуха.

Изготовление деталей и других элементов из меди, путем ее плавки в домашних условиях, возможно благодаря относительно низкой температуре разрушения кристаллической решетки в материале. Используя описанные выше приспособления и ознакомившись с видео, у большинства получится реализовать эту цель.

ОКСИДИРОВАНИЕ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ
СОСТАРИВАНИЕ МЕДИ, СЕРЕБРА, БРОНЗЫ ИЛИ ЛАТУНИ ВОДНЫМ РАСТВОРОМ
СЕРНОЙ ПЕЧЕНИ


Серная печень (Liver of sulphur / Liver of sulfur ) - полисульфид калия или полисульфид натрия.

Медь и серебро хорошо патинируются водным раствором серной печени, постепенно приобретая густой черный цвет, а бронза и латунь - слабые оттенки.

Спекание над огнем патинирующего состава и дало в старину название "печень" - от слова "печь", "спекать".


Патина - плёнка (налёт).
Патина бывает двух видов: естественная и искусственная.

Естественная патин а - это тонкая, но достаточно плотная и прочная оксидная плёнка, образующаяся на поверхности декоративных элементов в естественных условиях (под воздействием окружающей среды).

Естественную патину часто считают благородной и, как правило, стараются ее беречь.

Искусственная патина - налёт, образующийся на поверхности декоративных элементов после нанесения на их поверхность различных мастик, растворов и иных, предназначенных для этого, составов.

Оксидирование - создание оксидной плёнки на поверхности декоративного элемента в результате окислительно-восстановительной реакции. Оксидирование используют, в числе прочего, для получения красивого декоративного покрытия.

Для оксидирования меди, серебра, бронзы или латуни вам понадобится:
- сам предмет, поверхность которого будет обработана раствором серной печени (здесь для примера - омедненный лист);
- щепотка серной печени;
- стеклянная или пластиковая емкость;
- кисточка.


Растворите порошок в воде.
Наличие осадка на дне вполне допустимо и не влияет на результат оксидирования.


Кистью нанесите состав на медную деталь.

Не допускайте попадания состава для чернения на поверхность натуральных камней и жемчуга.
Это может привести к изменению структуры камня.


Не больше, чем через минуту, медь и серебро покрываются оксидной пленкой коричнево-фиолетовго цвета.
При повторном нанесении состава медная поверхность темнеет, вплоть до черного.


Отвлечемся от процесса:)
Такой получается оксидная пленка, если раствор серной печени был слишком слабым:


Продолжим... :)
Отшлифуйте деталь в местах, где того требует художественный замысел.


Завиток справа оксидирован с помощью серной печени и отшлифован дремелем.


Особенности хранения состава :

Состав в гранулах
Условия хранения: в сухом и защищенном от прямых солнечных лучей месте
в плотно закрытой емкости при температуре не выше 25 гр. С.
Срок хранения и использования: более 1 года.

Готовый водный раствор
Условия хранения: в плотно закрытой емкости в прохладном месте (к примеру, в холодильнике).
Срок хранения и использования: не более 1-2 дней.

Натуральный метод

1. Отварите 2-4 яйца в кипящей воде 15 минут.

2. Выньте вареные яйца из воды и положите на разделочную доску. Ложкой разомните яйца вместе со скорлупой.

3. Раздавленные яйца переложите в пластиковый пакет с застёжкой-молнией. Пакет должен быть достаточно большим, чтобы в нём поместилось изделие. В качестве альтернативного варианта можно взять большую воздухонепроницаемую ёмкость.

4. Медный предмет поместите в пластиковый пакет и закройте его. Если в пакет вы кладёте больше одного предмета, убедитесь, что они не касаются друг друга, чтобы они оксидировались со всех сторон. Яичные желтки обязательны, потому что в них содержится большое количество серы, окисляющей медь.

5. 20 минут спустя выньте медный предмет из пакета с помощью металлических щипцов. Вы заметите, что поверхность меди потемнела. Если вы хотите более тёмную патину, оставьте изделие в пакете на всю ночь.

6. Выньте изделие из пакета и ополосните слегка тёплой водой, чтобы смыть яйцо.

ПАТИНИРОВАНИЕ и ОКСИДИРОВАНИЕ меди

Для изменения цвета красноватого металла чаще всего пользуются ПАТИНИРОВАНИЕМ серной печенью и сернистым аммонием или ОКСИДИРОВАНИЕМ азотной кислотой.

ПАТИНИРОВАНИЕ серной печенью

В состав серной печени входят поташ и сера. Сера горюча, поэтому требует аккуратности в обращении. Ее пары с воздухом образуют взрывчатые смеси. Хранить серу нужно в сухом месте, изолированном от окислителей (серной кислоты, марганцевокислого калия, бертолетовой соли). Дозы поташа и серы могут быть различными. Чаще всего смешивают 1 часть серы с 2 частями поташа. Ссыпанные вместе, оба порошкообразных вещества тщательно перемешивают, помещают в металлический сосуд с ручкой и ставят нагреваться. Содержимое сосуда рекомендуется помешивать. Сплавление реактивов происходит в течение 15-25 мин. При реакции образуется темная масса серной печени. От высокой температуры сера тлеет сине-зеленым огнем. Это не должно вызывать беспокойства, так как патинирующие свойства серной печени сохранятся. Готовую горячую массу заливают водой, в которой растворяется образовавшийся расплав. Вода приобретает интенсивный черный цвет.


В горячий водный раствор серной печени опускают предварительно обработанные медные изделия. Если лист большой и в сосуд не входит, его поливают сверху раствором или смазывают мягкой кистью.

Медь чернеет очень быстро. От взаимодействия ионов серы с металлом образуется сульфид меди. Эта соль черного цвета, нерастворимая в воде и в разбавленных кислотах.

Реакция идет быстрее и ПАТИНИРОВАНИЕ будет качественнее, если пластинку предварительно нагреть. При этом следует пользоваться не открытым огнем, а электроплиткой. Затем пластинку промывают в теплой проточной воде и слегка протирают выпуклые места пемзовым порошком. В углублениях получается черный цвет, на наклонных поверхностях - сероватый, на выпуклостях - блестящая красная медь. Создается имитация под старину.

Водный раствор серной печени может воздействовать и на изделия из серебра или посеребренные. Они также покрываются черным налетом.

Оксидирование и патинирование меди, латуни и бронзы.

Некоторые химические реакции приводят к образованию на поверхности металлов окисей и закисей, т. е. кислородных соединений. Этот процесс называют оксидированием.

Нередко химические элементы, взаимодействуя с металлом или сплавом, способствуют появлению сернистых или хлористых соединений. Процесс образования таких соединений называют патинированием.

Если окунуть металлическое изделие в подготовленный раствор, оно буквально на глазах меняет цвет. Сверкающее металлическое изделие за несколько секунд приобретает облик старинного изделия.

Большинство химических соединений, которые применяют для патинирования и оксидирования металлов, токсичны и опасны для человека. Поэтому хранить их нужно в сосудах с притертыми пробками, а все работы, связанные с выделением ядовитых и горючих паров и газов, следует проводить в вытяжном шкафу. Дверцы шкафа должны быть слегка приоткрыты.

Перед изменением цвета металла необходимо провести некоторые подготовительные операции. Предмет очищают и обезжиривают, хорошо промывают и просушивают в опилках. Металлические художественные изделия и монеты ни в коем случае нельзя протирать полотенцем. Полотенцем стираются непрочные патинирующие пленки, не закрепленные лаком, остается влага в углубленных рельефах, ткань зацепляется за высокие выступы и может погнуть их. Опилки быстро и равномерно оттягивают воду от металлической поверхности.

Патина от серого до черного цвета

Приготовление серной печени:
Чтобы приготовить серную печень, нужно одну часть порошковой серы смешать с двумя частями поташа в жестяной банке и поставить на огонь. Через несколько минут порошок расплавится, потемнеет и начнет спекаться, постепенно приобретая темно-бурый цвет. (Кстати, спекание патинирующей массы и дало в старину название «печень» — от слов «печь», «спекать».)
Во время спекания пары серы могут загореться слабым сине-зеленым пламенем. Не сбивайте пламя — оно не ухудшит качество серной печени. Примерно через 15 минут прекратите спекание. Для продолжительного хранения серную печень растолките в порошок и засыпьте в стеклянную банку с плотной крышкой.

Метод №1
Применяется на:
Медь, стерлинговое серебро, и бронза или латунь (легкий оттенок). Не действует на нейзильбер.
Цвета:
На меди и серебре - разброс оттенков от пурпурного/голубого (трудно получить) до коричнево-серого, серого, черного. На латуни и бронзе - только нежно-золотистый.

Прочная и красивая патина образуется на поверхности меди, обработанной в водном растворе серной печени.

При составлении раствора в 1 л воды всыпьте 10—20 г порошка серной печени. Патина, полученная на металле раствором серной печени, прочная и красивая, глубокого черного цвета. Но не всегда нужна такая интенсивная окраска. Порой, чтобы придать старинный вид изделию из меди, достаточно нанести легкую серую патину. В литр воды насыпьте 2—3 г поваренной соли и 2—3 г серной печени. Опустите в раствор медную пластинку. После появления серого цвета необходимой тональности промойте пластинку чистой водой и высушите.

Метод №2
Для чернения медной вещи готовят насыщенный раствор сернокислой меди, добавляют в него нашатырный спирт до тех пор, пока смесь не примет яркий прозрачный синий цвет. Обрабатываемая медная вещь опускается в этот раствор на несколько минут, затем вынимается и слегка нагревается до тех пор, пока не почернеет.

Метод №3
Медная вещь, подлежащая чернению, очищается сначала тонкой наждачной бумагой, после чего до ее очищенной поверхности стараются не прикасаться пальцами. Затем она или погружается в жидкий раствор хлористой платины, или смачивается им при помощи кисти. Раствор этот, если он не имеет кислой реакции, слегка подкисляется соляной кислотой.

Метод №4
Очень прочное чернение медных изделий получается в том случае, если погрузить их в насыщенный раствор металлической меди в азотной кислоте и затем слегка нагреть.

Патина красно-коричневая

Водный раствор хлористого цинка и медного купороса окрашивает медь в красно-коричневый цвет. Смешайте одну часть медного купороса с одной частью хлористого цинка и разведите в двух частях воды. Достаточно нескольких минут, чтобы медь приобрела красно-коричневый цвет. После промывки и просушки поверхность металла протрите маслом.

Патина от светло-коричневого до черного

Почернение металла наблюдается при патинировании меди сернистым аммонием.
В литре воды разбавляют 20 г сернистого аммония. В полученный раствор опускают изделие или поливают сверху и протирают кистью. Работу осуществляют в вытяжном шкафу. Находящиеся в водном растворе сернистого аммония ионы серы взаимодействуют с ионами меди. Образуется сульфид меди черного цвета.
Интенсивность патинирующего налета на металле может быть различного оттенка, от светло-коричневого до черного. Регулируют цвет, изменяя температуру нагревания пластинки перед патинированием.

Патина светло-коричневая

Грамм на литр:
дихромат натрия - 124
азотная кислота (плотность 1.40 грсм3) - 15,5
соляная кислота (1,192)- 4,65
сульфид аммония 18% раствор - 3-5
наносят кистью сразу после приготовления, через 4-5 часов смыть и повторить после просыхания 2 раза, полировать сухой ветошью.

Патина от темно-коричневой до тепло-черной патины

Грамм на литр:
персульфат аммония - 9,35
едкий натр - 50,0
на 5-25 мин в ванну с раствором, нагретым до 90 -95 градусов. промыть, осушить, повторить 2-3 раза

Патина от оливкового до коричневого цвета

Грамм на литр:
бертолетова соль - 50*70
нитрат меди - 40*50
хлорид аммония - 80*100
на 10-15 мин в ванну с подогретым раствором до 60-70 градусов.
получаемые пленки обладают механической прочностью и стойкостью к коррозии

Патина коричнево-черная

Грамм на литр:
молибдат аммония - 10
аммиак 25% водный раствор - 7
раствор должен быть подогрет до 60 - 70 градусов

Патина золотистого цвета

Грамм на литр:
сульфид меди - 0,6
едкий натр - 180
молочный сахар - 180

Раствор щелочи и лактозы готовят отдельно и только потом сливают вместе, кипятят 15 минут и добавляют сульфид меди.
изделие поместить в подогретый до 90 гр. раствор на 15 мин.

Патина золотисто-коричневого цвета с малиновой побежалостью и умеренным блеском

После очистки медных монет можно создать на них искусственную патину, поместив в раствор 50 г медного купороса и 5 г марганцовокислого калия на 1 литр воды, нагрев его до температуры 70-80С и продержав там до получения нужного цвета.

Патина зеленого цвета

Окрасить в зеленый цвет поверхность медных, латунных или бронзовых изделий можно различными способами.

Метод №1
Поверхность вещей при помощи губки смазывают сначала сильно разведенным раствором азотнокислой меди с добавлением небольшого количества поваренной соли. Затем, когда вещь просохнет, ее точно таким же образом смазывают раствором из 1 части щавелевокислого калия и 5 частей нашатыря в 94 частях слабого уксуса. Снова дают просохнуть и опять смазывают первым раствором; потом, по просыхании, опять вторым раствором и т.д. попеременно до тех пор, пока окрашивание не приобретет надлежащую силу.
Перед смазыванием намоченную в растворе губку следует сильно выжать так, чтобы она была влажной, но не мокрой. По окончании окраски поверхности вещи тщательно растирают жесткими волосяными щетками, особенно в углублениях и щелях. После 8-14 дней работы получается буровато-зеленоватое окрашивание.

Метод №2
Вещи в несколько приемов натирают суконкой, пропитанной неочищенной олеиновой кислотой (продукт, получаемый на стеариновых заводах). На поверхности вещей образуется сначала темно-зеленый слой олеиновокислой меди, которая под влиянием кислорода и влаги воздуха постепенно превращается в более светло-зеленую углекислую медь.
Процесс значительно ускоряется, если олеиновую кислоту предварительно довольно долго настаивать на стружках меди, а вещи после каждого смазывания такой кислотой, после просыхания смазки, слегка (не более нескольких капель!) опрыскивать при помощи пульверизатора водным раствором углекислого аммония.

Медные заготовки

Сегодня медь является одним из самых востребованных металлов. Высокий спрос объясняется отличительными характеристиками, присущими этому металлу. Медь проводит электроток лучше любых других металлов, кроме серебра, благодаря этому ее используют в производстве кабелей и электропроводов. Температура плавления меди не высокая, металл пластичный и легко поддается обработке, благодаря этому качеству стало возможным ее применение в строительстве в качестве водопроводных тр. Этот металл имеет высокое сопротивление к внешним раздражающим факторам, поэтому долговечен и может быть использован несколько раз, после переплавки. Это качество меди высоко ценят экологи, поскольку при повторной обработке металла тратится значительно меньшее количество энергии, чем при добыче и обработки руды, к тому же сохраняются земные недра. Добыча медной руды не проходит бесследно, на месте отработанных рудников появляются токсичные озера, наиболее известное во всем мире такое озеро – Беркли-Пит в штате Монтана в США.

Необходимая температура для плавления меди

Медь не является легкоплавким металлом

Люди нашли применение меди еще в древние времена, тогда ее добывали в виде самородков. Ввиду низкой температуры, необходимой для осуществления процесса плавления ее стали широко применять для изготовления орудий труда и охоты, самородки можно плавить на костре. В наши дни технология получения металла мало чем отличается от придуманной в древние времена, совершенствуются лишь печи, увеличена скорость обжига и объемы обработки. Здесь возникает уместный вопрос — какая температура плавления меди? Ответ на него можно найти в любом учебнике по физике и химии – медь начинает плавиться при температуре нагрева до 1083 о С.

Кипение меди уменьшает ее прочность

В процессе термического воздействия на металл происходит разрушение его кристаллической решетки, это достигается при определенной температуре, которая в течение некоторого времени остается постоянной. В этот момент и происходит плавка металла. Когда процесс разрушения кристаллов полностью завершен, температура металла снова начинает подниматься, и он переходит в жидкую форму и начинает кипеть. Температура плавления меди значительно ниже, чем та, при которой металл кипит. Процесс кипения начинается с появлением пузырьков, по аналогии с водой. На этом этапе любой металл, в том числе и медь, начинает терять свои характеристики, в основном это отражается на прочности и упругости. Температура кипения меди составляет 2560 о С. Во время остывания металла происходит похожая картина, как и при нагреве – сначала температура опускается до определенного градуса, в этот момент происходит затвердевание, которое длится некоторое время, затем продолжается остывание до обычного состояния.

Как изменяется металл под термическим воздействием

Любой нагрев меди влечет за собой изменение ее характеристик, наиболее значимой является величина ее удельного сопротивления. Медь является проводником электрического тока, при этом металл оказывает сопротивление движению носителям заряда. Отношение площади сечения проводника к оказываемому движению и называется удельным сопротивлением.

Так вот, эта величина для чистой меди составляет 0,0172 ОМ мм 2 /м при 20 о С. Этот показатель может измениться после термической обработки, а также вследствие добавления в состав различных примесей и добавок. Здесь наблюдается обратная зависимость сопротивления меди от температуры – чем выше была температура обработки металла, тем ниже будет ее сопротивление электрическому току. Для обеспечения наилучших электролитических характеристик медной проволоки, ее обрабатывают при 500 о С.

Во время термической обработки можно не только придавать металлу нужную форму и размер, но и создавать различные сплавы. Самыми распространёнными медными сплавами является бронза и латунь. Бронза получается путем смешивания меди с оловом, а латунь – с цинком. Добавление алюминия и стали увеличивает прочность материала, а добавление никеля повышает антикоррозийные свойства. Но стоит заметить, что любая примесь снижает главное свойство – электропроводность, поэтому для изготовления жил электрокабеля используют чистый состав металла.

Отжиг меди

Под отжигом меди следует понимать процесс ее нагрева с целью дальнейшей обработки и приданию необходимых форм изделию. В ходе отжига металл становится более пластичным и мягким, поддающимся различным трансформациям. При отжиге меди температура достигает 550 о С, она приобретает темно-красный оттенок. После нагрева желательно быстро производить ковку и оправлять изделие на охлаждение.

Если подвергать материал медленному, естественному охлаждению, то возможно образование наклепа, поэтому чаще применяют мгновенное охлаждение путем помещения заготовки в холодную воду. Если превысить допустимую величину нагрева, металл может стать более хрупким и ломким.

Во время отжига осуществляется процесс рекристаллизации меди, в ходе которого образуются новые зерна или кристаллы металла, которые не искажены решеткой и отделены от прежних зерен угловыми границами. Новые зерна по размеру могут сильно отличаться от предшественников, при их образовании высвобождается большое количество энергии, увеличивается плотность и появляется наклеп. Рекристаллизация осуществляется только после деформации изделия, и только после достижения ее определенного уровня. Для меди критический уровень деформации составляет 5%, если он не достигнут процесс формирования новых зерен не начнется. Температура рекристаллизации меди составляет 270 о С. Следует отметить, что при этой температуре процесс роста кристаллов только начинается, но он достаточно медленный, поэтому для достижения необходимого результата медь необходимо нагреть до 500 о С, тогда времени для остывания хватит для завершения процесса рекристаллизации.

Видео: Плавление меди в микроволновке

Опыты с медной проволокой. С медью можно поставить несколько любопытных опытов. Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь,- оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: СuСО 3 ∙Сu(ОН) 2 (основной карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит.

Cейчас обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты? Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет. Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыря-хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом NH 4 OH, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря, А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его «жало» окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.


© 2024
reaestate.ru - Недвижимость - юридический справочник