14.07.2019

Электронно лучевая трубка кратко. Экраны электронно-лучевых трубок. Обозначение и маркировка


В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Катод изготовляют оксидным, с косвенным нака­лом, в виде цилиндра с подогревателем. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором, цилиндрической формы с отверстием в до­нышке. Этот электрод служит для управления плотностью электронного потока и для предва­рительной его фокусировки. На модулятор подается отрицательное напряжение в несколько десятков вольт. Чем это напряжение больше, тем больше электронов возвращается на катод. Другие элек­троды, также цилиндрической формы, являются анодами. В ЭЛТ их минимум два. На втором аноде напряжение бывает от 500 В до нескольких киловольт (порядка 20 кВ), а на первом аноде напряжение в несколько раз меньше. Внутри анодов имеются перегородки с отвер­стиями (диафрагмы). Под действием ускоряющего поля анодов электроны приобретают зна­чительную скорость. Окончательная фокусировка электронного потока осуществляется с по­мощью неоднородного электрического поля в пространстве между анодами, а также благода­ря диафрагмам. Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока элек­тронов, летящих с большой скоростью от второго анода к люминесцентному экрану. Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Этот луч отклоняется под действием электрического или магнитного поля, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

ЭЛТ С электростатическим управлением.

Электрические поля обычно используются в ЭЛТ с экраном малого размера. В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча. Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин рисунок ниже. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования, подают на пластины, отклоняющие в вертикальном направлении. Если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала, на экране будет непрерывно воспроизводиться один период волнового процесса.

1- экран ЭЛТ, 2-катод, 3- модулятор, 4-первый анод, 5- второй анод, П - отклоняющие пластины.

ЭЛТ с электромагнитным управлением

В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Электромагнитные трубки имеют электронную пушку, такую же, как и электростатические. Разница состоит в том, что напряжение на первом аноде не изменяется, и аноды предназначе­ны только для ускорения электронного потока. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

Фокусировка электронного луча осуществляется при помощи фокусирующей катушки. Фокусирующая катушка имеет рядовую намотку и одевается прямо на колбу трубки. Фокуси­рующая катушка создает магнитное поле. Если электроны движутся по оси, то угол между вектором скорости и магнитными силовыми линиями будет равен 0, следовательно, сила Лорен­ца равна нулю. Если электрон влетает в магнитное под углом, то за счет силы Лоренца траек­тория электрона будет отклоняться к центру катушки. В результате все траектории электронов будут пересекаться в одной точке. Изменяя ток через фокусирующую катушку, можно изме­нять местоположение этой точки. Добиваются того, чтобы эта точка находилась в плоскости экрана. Отклонение луча осуществляется при помощи магнитных по­лей, формируемых двумя парами отклоняющих катушек. Одна пара - катушки вертикального отклонения, и другая - катушки таким образом, что их магнитные силовые линии на осевой линии будут вза­имно перпендикулярны. Катушки имеют сложную форму и располагаются на горловине трубки.

При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой, а также позволяет изготавливать экраны больших размеров.

Кинескопы.

Кинескопы относятся к комбинированным ЭЛТ, то есть они имеют электро­статическую фокусировку и электромагнитное отклонение луча для увеличения чувствитель­ности. Основным отличием кинескопов от ЭЛТ является следующее: электронная пушка кине­скопов имеет дополнительный электрод, который называется ускоряющим электродом. Он располагается между модулятором и первым анодом, на него подается положительное напря­жение в несколько сотен вольт относительно катода, и он служит для дополнительного уско­рения электронного потока.

Схематическое устройство кинескопа для черно-белого телевидения: 1- нить подогревателя катода; 2- катод; 3- управляющий электрод; 4- ускоряющий электрод; 5- первый анод; 6- второй анод; 7- проводящее покрытие (аквадаг); 8 и 9- катушки вертикального и горизонтального отклонения луча; 10- электронный луч; 11- экран; 12- вывод второго анода.

Вторым отличием является то, что экран кинескопа, в отличие от ЭЛТ, трехслойный:

1 слой - наружный слой - стекло. К стеклу экрана кинескопа предъявляются повышенные тре­бования по параллельности стенок и по отсутствию посторонних включений.

2 слой - это люминофор.

3 слой - это тонкая алюминиевая пленка. Эта пленка выполняет две функции:

Увеличивает яркость свечения экрана, действуя как зеркало.

Основная функция состоит в защите люминофора от тяжелых ионов, которые вылетают из катода вместе с электронами.

Цветные кинескопы.

Принцип действия основан на том, что любой цвет и оттенок можно получить смешиванием трех цветов - красного, синего и зеленого. Поэтому цветные кинескопы имеют три электронных пушки и одну общую отклоняющую систему. Экран цвет­ного кинескопа состоит из отдельных участков, каждый из которых содержит три ячейки лю­минофора, которые светятся красным, синим и зеленым цветами. Причем размеры этих ячеек настолько малы и они расположены настолько близко друг к другу, что их свечение восприни­мается глазом как суммарное. Это общий принцип построения цветных кинескопов.

Мозаика (триады) экрана цветного кинескопа с теневой маской: R- красные, G- зеленые, B- синие люминофорные «точки».

Электропроводность полупроводников

Собственная проводимость полупроводников.

Собственным полупроводником называется идеально химически чистый полупроводник с однородной кристаллической решеткой на валентной орбите которого находится четыре электрона. В полупроводниковых приборах чаще всего используются кремний Si и германий Ge .

Ниже показана электронная оболочка атома кремния. В образовании химических связей и в процессе проводимости могут участвовать только четыре электрона внешней оболочки, называемые валентными электронами. Десять внутренних электронов в таких процессах не участвуют.

Кристаллическая структура полупроводника на плоскости может быть представлена следую­щим образом.

Если электрон получил энергию, большую ширины запрещенной зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет положительный заряд, равный по величине заряду электрона и называется дыркой . В химически чистом полупро­воднике концентрация электронов n равна концентрации дырок p .

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направле­ния движения электронов, поэтому дырку принято считать подвижным положительным носи­телем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счет собственных носителей заряда называется собственной проводимостью проводника.

Примесная проводимость проводников.

Так как у химически чистых полупроводников проводимость существенно зависит от внешних условий, в полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанав­ливают ковалентные связи с атомами полупроводника, а пятый электрон остается свободным. За счет этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счет которой n > p , называется донорной примесью. Полупроводник, у которого n > p , называется полупроводником с электронным типом проводимости, или полупроводником n -типа.

В полупроводнике n -типа электроны называются основными носителями заряда, а дыр­ки - неосновными носителями заряда.

При введении трехвалентной примеси три ее валентных электрона восстанавливают ковалент­ную связь с атомами полупроводника, а четвертая ковалентная связь оказывается не восста­новленной, т. е. имеет место дырка. В результате этого концентрация дырок будет больше концентрации электронов.

Примесь, при которой p > n , называется акцепторной примесью.

Полупроводник, у которого p > n , называется полупроводником с дырочным типом проводимости, или полупроводником р-типа . В полупроводнике р-типа дырки называются основными носителями заряда, а электро­ны - неосновными носителями заряда.

Образование электронно-дырочного перехода.

Ввиду неравномерной концен­трации на границе раздела р и n полупроводника возникает диффузионный ток, за счет ко­торого электроны из n -области переходят в р-область , а на их месте остаются некомпенси­рованные заряды положительных ионов донорной примеси. Электроны, приходящие в р-область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицатель­ных ионов акцепторной примеси. Ширина р- n перехода - десятые доли микрона. На грани­це раздела возникает внутреннее электрическое поле р-n перехода, которое будет тормозя­щим для основных носителей заряда и будет их отбрасывать от границы раздела.

Для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они будут основными. Максимум напряженности электрического поля - на границе разде­ла.

Распределение потенциала по ширине полупроводника называется потенциальной диаграм­мой. Разность потенциалов на р- n переходе называется контактной разностью потенциалов или потенциальным барьером . Для того, чтобы основной носитель заряда смог преодолеть р- n переход, его энергия должна быть достаточной для преодоления потенциального барьера.

Прямое и обратное включение р- n перехода.

Приложим внешнее напряжение плюсом к р -области. Внешнее электрическое поле направле­но навстречу внутреннему полю р- n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэто­му через р- n переход будет протекать сравнительно большой ток, вызванный основными носи­телями заряда.

Такое включение р- n перехода называется прямым, и ток через р- n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении р- n переход открыт. Если подключить внешнее напряжение минусом на р-область , а плюсом на n -область , то возникает внешнее электрическое поле, линии напряженности кото­рого совпадают с внутренним полем р- n перехода. В результате это приведет к увеличению по­тенциального барьера и ширины р- n перехода. Основные носители заряда не смогут преодо­леть р- n переход, и считается, что р- n переход закрыт. Оба поля - и внутреннее и внешнее - яв­ляются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через р- n переход, образуя очень маленький ток, который называется обрат­ным током . Такое включение р- n перехода также называется обратным.

Свойства р- n перехода. Вольтамперная характеристика р- n перехода

К основным свойствам р- n перехода относятся:

- свойство односторонней проводимости;

Температурные свойства р- n перехода;

Частотные свойства р- n перехода;

Пробой р- n перехода.

Свойство односторонней проводимости р- n перехода рассмотрим на вольтамперной характеристике.

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через р- n переход тока от величины приложенного напряжения I = f (U ) – рис.29.

Так как величина обратного тока во много раз меньше, чем прямого, то обратным током мож­но пренебречь и считать, что р- n переход проводит ток только в одну сторону. Температурное свойство р- n перехода показывает, как изменяется работа р- n перехода при из­менении температуры. На р- n переход в значительной степени влияет нагрев, в очень малой степени - охлаждение. При увеличении температуры увеличивается термогенерация носи­телей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства р- n перехода показывают, как работает р- n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства р- n перехода определяются двумя видами емкости перехода.

Первый вид емкости - это емкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной емкостью. Второй тип емкости - это диффузионная емкость, обусловленная диффузией подвижных носи­телей заряда через р- n переход при прямом включении.

Если на р- n переход подавать переменное напряжение, то емкостное сопротивление р- n пере­хода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ем­костное сопротивление может сравняться с внутренним сопротивлением р- n перехода при пря­мом включении. В этом случае при обратном включении через эту емкость потечет достаточно большой обратный ток, и р- n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина емкости р- n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная емкость, т. к. диффузионная емкость имеет место при прямом включении, когда внутреннее сопротивление р- n перехода мало.

Пробой р- n перехода .

При увеличении обратного напряжения энергия электрического поля становится достаточной для генерации носителей заряда. Это приводит к сильному увеличению обратного тока. Явление сильного увеличения обратного тока при определенном обратном напряжении назы­вается электрическим пробоем р- n перехода.

Электрический пробой - это обратимый пробой, т. е. при уменьшении обратного напряжения р- n переход восстанавливает свойство односторонней проводимости. Если обратное напряже­ние не уменьшить, то полупроводник сильно нагреется за счет теплового действия тока и р- n переход сгорает. Такое явление называется тепловым пробоем р- n перехода. Тепловой пробой необратим.

Полупроводниковые диоды

Полупроводни­ковым диодом называется устройство, состоящее из кристалла полупроводника, содержа­щее обычно один р-n переход и имеющее два вывода. Существует много различных типов диодов – выпрямительные, импульсные, туннельные, обращенные, сверхвысокочастотные диоды, а также стабилитроны, варикапы, фотодиоды, светодиоды и др.

Маркировка диодов состоит из 4 обозначений:

К С -156 А

§ 137. Электронно-лучевая трубка. Осциллограф

Для наблюдения, записи, измерений и контроля различных изменяющихся процессов в устройствах автоматики, телемеханики и других областях техники применяют осциллографы (рис. 198). Основной частью осциллографа является электронно-лучевая трубка - электровакуумный прибор, в наиболее простом виде предназначенный для преобразования электрических сигналов в световые.

Рассмотрим, как отклоняется электрон и электронный луч в электрическом поле электронно-лучевой трубки осциллографа.
Если электрон поместить между двумя параллельными пластинами (рис. 199, а), имеющими разноименные электрические заряды, то под действием электрического поля, возникающего между пластинами, электрон отклонится, так как он заряжен отрицательно. Он отталкивается от пластины А , имеющей отрицательный заряд, и притягивается к пластине Б , имеющей положительный электрический заряд. Движение электрона будет направлено вдоль линий поля.

Когда в поле между пластинами попадает движущийся со скоростью V электрон (рис. 199, б), то на него действуют не только силы поля F , но и сила F 1 , направленная по его движению. В результате действия этих сил электрон отклонится от своего прямолинейного пути и будет перемещаться по линии ОК . - по диагонали.
Если между пластинами пропустить узкий пучок движущихся электронов - электронный луч (рис. 199, в), он под действием электрического поля отклонится. Угол отклонения электронного луча зависит от скорости движения электронов, из которых состоит луч, и величины напряжения, создающего электрическое поле между пластинами.
Каждая электронно-лучевая трубка (рис. 200) представляет собой баллон, из которого выкачан воздух. Коническая часть внутренней поверхности баллона покрыта графитом и называется аквадагом . Внутри баллона 3 помещается электронный прожектор 8 - электронная пушка, отклоняющие пластины 4 и 6 , и экран 5 . Электронный прожектор трубки состоит из подогревного катода, который излучает электроны, и системы электродов, образующих электронный луч. Этот луч, испускаемый катодом трубки, перемещается с большой скоростью к экрану и по существу является электрическим током, направленным в сторону, обратную движению электронов.

Катод представляет собой никелевый цилиндр, торец которого покрыт слоем оксида. Цилиндр надет на тонкостенную керамиковую трубку, а внутри нее для подогрева катода помещается нить из вольфрама, выполненная в виде спирали.
Катод расположен внутри управляющего электрода 7 , имеющего форму стаканчика. В дне стаканчика сделано небольшое отверстие, через которое проходят электроны, вылетающие из катода; это отверстие называется диафрагмой . На управляющий электрод подается небольшое отрицательное напряжение (порядка нескольких десятков вольт) по отношению к катоду. Оно создает электрическое поле, действующее на электроны, вылетающие с катода так, что они собираются в узкий луч, направленный в сторону экрана трубки. Точка пересечения траекторий полета электронов называется первым фокусом трубки . Увеличивая отрицательное напряжение на управляющем электроде, можно часть электронов отклонить настолько, что они не пройдут через отверстие и таким образом количестно электронов, попадающих на экран, уменьшится. Изменяя напряжение управляющего электрода, можно регулировать количество электронов в нем. Это позволяет изменять яркость светящегося пятна на экране электроннолучевой трубки, который покрыт специальным составом, обладающим способностью светиться под воздействием электронного луча, попадающего на него.
В состав электронной пушки также входят создающие ускоряющее поле два анода: первый - фокусирующий 1 и второй - управляющий 2 . Каждый из анодов представляет собой цилиндр с диафрагмой, которая служит для ограничения поперечного сечения электронного луча.
Аноды располагаются вдоль оси трубки на некотором расстоянии один от другого. На первый анод подается положительное напряжение порядка нескольких сотен вольт, а второй анод, соединенный с аквадагом трубки, имеет положительный потенциал, в несколько раз больший потенциала первого анода.
Электроны, вылетающие из отверстия управляющего электрода, попадая в электрическое поле первого анода, приобретают большую скорость. Пролетая внутри первого анода, пучок электронов под действием сил электрического поля сжимается и образует тонкий электронный луч. Далее электроны пролетают через второй анод, приобретают еще большую скорость (несколько тысяч километров в секунду), летят через диафрагму к экрану. На последнем под действием ударов электронов образуется светящееся пятно диаметром менее одного миллиметра. В этом пятне расположен второй фокус электронно-лучевой трубки.
Для отклонения электронного луча в двух плоскостях электронно-лучевая трубка снабжена двумя парами пластин 6 и 4 , расположенных в разных плоскостях перпендикулярно одна другой.
Первая пара пластин 6 , которая находится ближе в электронной пушке, служит для отклонения луча в вертикальном направлении; эти пластины называются вертикально отклоняющими . Вторая пара пластин 4 , расположенная ближе к экрану трубки, служит для отклонения луча в горизонтальном направлении; эти пластины называются горизонтально отклоняющими .
Рассмотрим принцип действия отклоняющих пластин (рис. 201).

Отклоняющие пластины В 2 и Г 2 подключены к движкам потенциометров П в и П г. К концам потенциометров подается постоянное напряжение. Отклоняющие пластины В 1 и Г 1 как и средние точки потенциометров, заземлены, и их потенциалы равны нулю.
Когда движки потенциометров стоят в среднем положении, потенциал на всех пластинах равен нулю, и электронный луч создает светящееся пятно в центре экрана - точку О . При перемещении движка потенциометра П г влево на пластину Г 2 подается отрицательное напряжение и поэтому электронный луч, отталкиваясь от этой пластины, отклонится и светящаяся точка на экране сместится в направлении точки А .
При перемещении движка потенциометра П г вправо потенциал пластины Г 2 будет увеличиваться и электронный луч, а следовательно, и светящаяся точка на экране сместятся по горизонтали к точке Б . Таким образом, при непрерывном изменении потенциала на пластине Г 2 электронный луч прочертит на экране горизонтальную линию АБ .
Аналогично при изменении потенциометром П в напряжения на вертикально отклоняющих пластинах луч будет отклоняться по вертикали и прочертит на экране вертикальную линию ВГ . При одновременном изменении напряжения на обеих парах отклоняющих пластин можно переместить электронный луч в любом направлении.
Экран электронно-лучевой трубки покрыт специальным составом - люминофором, способным светиться под действием ударов быстро летящих электронов. Таким образом, когда сфокусированный луч попадает в ту или иную точку экрана, то она начинает светиться.
Для покрытия экранов электронно-лучевых трубок используют люминофоры в виде окиси цинка, бериллиевого цинка, смеси сернокислого цинка с сернокислым кадмием и др. Эти материалы обладают свойством продолжать некоторое время свое свечение после прекращения ударов электронов. Это значит, что они обладают послесвечением .
Известно, что глаз человека, получив зрительное впечатление, может удержать его примерно 1/16 секунды. В электронно-лучевой трубке луч по экрану может перемещаться настолько быстро, что ряд последовательных светящихся точек на экране воспринимаются глазом в виде сплошной светящейся линии.
Напряжение, подлежащее изучению (рассмотрению) с помощью осциллографа, подается на вертикально отклоняющие пластины трубки. На горизонтально отклоняющие пластины подают пилообразное напряжение, график которого приведен на рис. 202, а.

Это напряжение дает электронный генератор пилообразных импульсов, который смонтирован внутри осциллографа. Под действием пилообразного напряжения электронный луч перемещается горизонтально по экрану. За время t 1 - t 8 луч перемещается по экрану слева направо, а за время t 9 - t 10 быстро возвращается в исходное положение, затем вновь движется слева направо и т. д.
Выясним, как можно увидеть на экране электронно-лучевой трубки осциллографа форму кривой мгновенных значений напряжения, подаваемого на вертикально отклоняющие пластины. Допустим, что к горизонтально отклоняющим трубкам подано пилообразное напряжение с амплитудой 60 в и с периодом изменения в 1/50 сек .
На рис. 202, б показан один период синусоидального напряжения, форму кривой которого мы хотим увидеть, а в круге (рис. 202, в) показано результирующее перемещение электронного луча на экране трубки осциллографа.
Напряжения в одни и те же мгновения имеют на верхних двух графиках одинаковые обозначения.
В момент времени t 1 пилообразное напряжение (U г), отклоняющее электронный луч по горизонтали, равно 60 в , а напряжение на вертикальных пластинах U в равно нулю и на экране светится точка O 1 . В момент времени t 2 напряжение U г = - 50 в , а напряжение U в = 45 в . За время, равное t 2 - t 1 , электронный луч переместится в положение O 2 по линии O 1 - O 2 . В момент времени t 3 напряжение U г = 35 в , а напряжение U в = 84,6 в . За время t 3 - t 2 луч переместится в точку O 3 по линии O 2 - O 3 и т. д.
Процесс воздействия электрических полей, создаваемых обеими парами отклоняющих пластин, на электронный луч будет продолжаться, и луч будет отклоняться далее по линии O 3 - O 4 - o 6 и т. д.
За время t 10 - t 9 электронный луч быстро отклонится влево (произойдет обратный ход луча), а затем процесс будет повторяться: Исследуемое напряжение изменяется периодически, поэтому электронный луч будет многократно перемещаться по одному и тому же пути, в результате чего будет видна довольно яркая линия, по форме совпадающая с формой кривой напряжения, поданного на вертикально отклоняющие пластины трубки.
Так как период (и частота) напряжений пилообразных импульсов развертки и исследуемого напряжения равны, то синусоида на экране будет неподвижна. Если частота этих напряжений разная и не кратная друг другу, то изображение будет перемещаться вдоль экрана трубки.
При подключении к обеим парам отклоняющих пластин двух синусоидальных напряжений одинаковых амплитуд и частот, но сдвинутых по фазе на 90°, на экране трубки будет видна окружность. Таким образом, с помощью осциллографа можно наблюдать и исследовать различные процессы, происходящие в электрических цепях. Кроме генератора пилообразных импульсов, осциллограф имеет усилители для усиления напряжения, подаваемого на пластины вертикального отклонения луча, и пилообразного напряжения, подаваемого на пластины горизонтального отклонения.

Задачи работы

  1. общее знакомство с устройством и принципом действия электронных осциллографов,
  2. определение чувствительности осциллографа,
  3. проведение некоторых измерений в цепи переменного тока при помощи осциллографа.

Общие сведения об устройстве и работе электронного осциллографа

С помощью катода электронно-лучевой трубки осциллографа создается электронный поток, который формируется в трубке в узкий пучок, направленный к экрану. Сфокусированный на экране трубки электронный пучок вызывает в месте падения светящееся пятно, яркость которого зависит от энергии пучка (экран покрыт специальным люминесцирующим составом, светящимся под воздействием пучка электронов). Электронный луч является практически безынерционным, поэтому световое пятно можно практически мгновенно перемещать в любом направлении по экрану, если воздействовать на электронный пучок электрическим полем. Поле создается с помощью двух пар плоскопараллельных пластин, называемых отклоняющими пластинами. Малая инерционность луча обуславливает возможность наблюдения быстропеременных процессов с частотой 10 9 Гц и более.

Рассматривая существующие осциллографы, разнообразные по конструкции и назначению, можно увидеть, что функциональная схема их примерно одинакова. Основными и обязательными узлами должны быть:

Электронно-лучевая трубка для визуального наблюдения исследуемого процесса;

Источники питания для получения необходимых напряжений, подаваемых на электроды трубки;

Устройство для регулировки яркости, фокусировки и смещения луча;

Генератор развертки для перемещения электронного луча (и соответственно, светящегося пятна) по экрану трубки с определенной скоростью;

Усилители (и аттенюаторы), используемые для усиления или ослабления напряжения исследуемого сигнала, если оно недостаточно для заметного отклонения луча на экране трубки или, напротив, слишком велико.

Устройство электронно-лучевой трубки

Прежде всего, рассмотрим устройство электронно-лучевой трубки (рис. 36.1). Обычно это стеклянная колба 3, откачанная до высокого вакуума. В узкой ее части расположен нагреваемый катод 4, из которого вылетают электроны за счет термоэлектронной эмиссии Система цилиндрических электродов 5, 6, 7 фокусирует электроны в узкий пучок 12 и управляет его интенсивностью. Далее следуют две пары отклоняющих пластин 8 и 9 (горизонтальные и вертикальные) и, наконец, экран 10 – дно колбы 3, покрытое люминесцирующим составом, благодаря которому становится видимым след электронного луча.

В состав катода входит вольфрамовая нить – нагреватель 2, расположенная в узкой трубке, торец которой (для уменьшения работы выхода электронов) покрыт слоем окиси бария или стронция и собственно является источником потока электронов.

Процесс формирования электронов в узкий луч с помощью электростатических полей во многом напоминает действие оптических линз на световой луч. Поэтому система электродов 5,6,7 носит название электронно-оптического устройства.

Электрод 5 (модулятор) в виде закрытого цилиндра с узким отверстием находится под небольшим отрицательным потенциалом относительно катода и выполняет функции, аналогичные управляющей сетке электронной лампы. Изменяя величину отрицательного напряжения на модулирующем или управляющем электроде, можно изменять количество электронов, проходящих через его отверстие. Следовательно, с помощью модулирующего электрода можно управлять яркостью луча на экране. Потенциометр, управляющий величиной отрицательного напряжения на модуляторе, выведен на переднюю панель осциллографа с надписью ”яркость”.

Система из двух коаксиальных цилиндров 6 и 7, называемых первым и вторым анодами, служит для ускорения и фокусировки пучка. Электростатическое поле в промежутке между первым и вторым анодами направлено таким образом, что отклоняет расходящиеся траектории электронов снова к оси цилиндра, подобно тому, как оптическая система из двух линз действует на расходящийся пучок света. При этом катод 4 и модулятор 5 составляют первую электронную линзу, а первому и второму анодам соответствует другая электронная линза.

В итоге пучок электронов фокусируется в точке, которая должна лежать в плоскости экрана, что оказывается возможным при соответствующем выборе разности потенциалов между первым и вторым анодами. Ручка потенциометра, регулирующего это напряжение, выведена на переднюю панель осциллограф с надписью ”фокус”.

При попадании электронного луча на экран на нем образуется резко очерченное светящееся пятно (соответствующее сечению пучка), яркость которого зависит от количества и скорости электронов в пучке. Большая часть энергии пучка при бомбардировке экрана превращается в тепловую. Во избежание прожога люминесцирующего покрытия не допустима большая яркость при неподвижном электронном луче. Отклонение луча осуществляется с помощью двух пар плоскопараллельных пластин 8 и 9, расположенных под прямым углом друг к другу.

При наличии разности потенциалов на пластинах одной пары однородное электрическое поле между ними отклоняет траекторию пучка электронов в зависимости от величины и знака этого поля. Расчеты показывают, что величина отклонения луча на экране трубки D (в миллиметрах) связана с напряжением на пластинах U D и напряжением на втором аноде Ua 2 (в вольтах) следующим образом.

Пожалуй, нет такого человека, который бы в своей жизни не сталкивался с приборами, в конструкцию которых входит электронно-лучевая трубка (или ЭЛТ). Сейчас подобные решения активно вытесняются своими более современными аналогами на основе жидкокристаллических экранов (ЖК). Однако существует ряд областей, в которых электронно-лучевая трубка по-прежнему является незаменимой. Например, в высокоточных осциллографах ЖК использовать нельзя. Тем не менее, очевидно одно - прогресс устройств отображения информации в конечном итоге приведет к полному отказу от ЭЛТ. Это вопрос времени.

История появления

Первооткрывателем можно считать Ю. Плюккера, который в 1859 году, изучая поведение металлов при различных внешних воздействиях, обнаружил явление излучения (эмиссии) элементарных частиц - электронов. Формируемые пучки частиц получили название катодных лучей. Также он обратил внимание на возникновение видимого свечения некоторых веществ (люминофор) при попадании на них электронных лучей. Современная электронно-лучевая трубка способна создавать изображение именно благодаря этим двум открытиям.

Через 20 лет опытным путем было установлено, что направлением движения излучаемых электронов можно управлять воздействием внешнего магнитного поля. Это легко объяснить, если вспомнить, что перемещающиеся носители отрицательного заряда характеризуются магнитным и электрическим полями.

В 1895 году К. Ф. Браун доработал систему управления в трубке и тем самым сумел менять вектор направленности потока частиц не только полем, но и особым зеркалом, способным вращаться, что открыло совершенно новые перспективы использования изобретения. В 1903 году Венельт разместил внутри трубки катод-электрод в виде цилиндра, что дало возможность управлять интенсивностью излучаемого потока.

В 1905 году Эйнштейн сформулировал уравнения расчета фотоэффекта и через 6 лет было продемонстрировано работающее устройство передачи изображений на расстояния. Управление лучом осуществлялось а за величину яркости отвечал конденсатор.

Во время начала производства первых моделей ЭЛТ промышленность была не готова создавать экраны с большим размером диагонали, поэтому в качестве компромисса применялись увеличительные линзы.

Устройство электронно-лучевой трубки

С тех пор устройство было доработано, однако изменения носят эволюционный характер, так как ничего принципиально нового в ход работы добавлено не было.

Стеклянный корпус начинается трубкой с конусообразным расширением, образующим экран. В устройствах цветного изображения внутренняя поверхность с определенным шагом покрыта тремя видами люминофора дающими свой цвет свечения при попадании пучка электронов. Соответственно, есть три катода (пушки). Для того чтобы отсеять расфокусировавшиеся электроны и обеспечить точное попадание нужного луча в нужную точку экрана, между катодной системой и слоем люминофора размещают стальную решетку - маску. Ее можно сравнить с трафаретом, отсекающим все лишнее.

С поверхности подогреваемых катодов начинается эмиссия электронов. Они устремляются в сторону анода (электрод, с положительным зарядом), подключенного к конусной части трубки. Далее пучки фокусируются специальной катушкой и попадают в поле отклоняющей системы. Проходя через решетку, падают на нужные точки экрана, вызывая преобразование своей в свечение.

Вычислительная техника

Мониторы с электронно-лучевой трубкой нашли широкое применение в составе компьютерных систем. Простота конструкции, высокая надежность, точная цветопередача и отсутствие задержек (тех самых миллисекунд реакции матрицы в ЖК) - вот их основные преимущества. Однако в последнее время, как уже указывалось, ЭЛТ вытесняется более экономными и эргономичными ЖК-мониторами.


© 2024
reaestate.ru - Недвижимость - юридический справочник